Search results for "sub-Finsler geometry"

showing 4 items of 4 documents

Lipschitz Carnot-Carathéodory Structures and their Limits

2022

AbstractIn this paper we discuss the convergence of distances associated to converging structures of Lipschitz vector fields and continuously varying norms on a smooth manifold. We prove that, under a mild controllability assumption on the limit vector-fields structure, the distances associated to equi-Lipschitz vector-fields structures that converge uniformly on compact subsets, and to norms that converge uniformly on compact subsets, converge locally uniformly to the limit Carnot-Carathéodory distance. In the case in which the limit distance is boundedly compact, we show that the convergence of the distances is uniform on compact sets. We show an example in which the limit distance is not…

differentiaaligeometriaNumerical AnalysissäätöteoriaControl and OptimizationAlgebra and Number Theorysub-Riemannian geometryMitchell’s theoremControl and Systems Engineeringsub-Finsler geometryLipschitz vector fieldsmittateoria
researchProduct

Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems

2020

We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented. peerReviewed

0209 industrial biotechnologyPure mathematicsRank (linear algebra)variaatiolaskenta02 engineering and technology01 natural sciencesdifferentiaaligeometriaoptimal controlsymbols.namesake020901 industrial engineering & automationMathematics (miscellaneous)sub-Finsler geometryPontryagin maximum principleLie algebra0101 mathematicsMathematicsLie groups010102 general mathematicsLie groupBasis (universal algebra)matemaattinen optimointiFoliationsäätöteoriasymbolsCarnot cycleConvex functionSymplectic geometryRegular and Chaotic Dynamics
researchProduct

Sub-Finsler Geodesics on the Cartan Group

2018

This paper is a continuation of the work by the same authors on the Cartan group equipped with the sub-Finsler $\ell_\infty$ norm. We start by giving a detailed presentation of the structure of bang-bang extremal trajectories. Then we prove upper bounds on the number of switchings on bang-bang minimizers. We prove that any normal extremal is either bang-bang, or singular, or mixed. Consequently, we study mixed extremals. In particular, we prove that every two points can be connected by a piecewise smooth minimizer, and we give a uniform bound on the number of such pieces.

Mathematics - Differential Geometry0209 industrial biotechnologyPure mathematicsPhysics::General PhysicsGeodesic49K1549J1502 engineering and technology01 natural sciencesContinuationGeneral Relativity and Quantum CosmologyPhysics::Popular Physics020901 industrial engineering & automationMathematics (miscellaneous)Geometric controlFOS: Mathematics0101 mathematicsMathematics - Optimization and ControlMathematics010102 general mathematicsta111matemaattinen optimointiPhysics::History of Physics49J15; 49K15; Cartan group; geometric control; Sub-Finsler geometry; time-optimal control; Mathematics (miscellaneous)säätöteoriaDifferential Geometry (math.DG)Optimization and Control (math.OC)geometric controlNorm (mathematics)Piecewisetime-optimal controldifferentiaaliyhtälötSub-Finsler geometryCartan groupRegular and Chaotic Dynamics
researchProduct

A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries

2017

AbstractCarnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We present the basic theory of Carnot groups together with several remarks.We consider them as special cases of graded groups and as homogeneous metric spaces.We discuss the regularity of isometries in the general case of Carnot-Carathéodory spaces and of nilpotent metric Lie groups.

Pure mathematicsmetric groupssub-finsler geometryengineering.material01 natural sciencesdifferentiaaligeometriasymbols.namesakesub-Finsler geometryMathematics::Metric Geometry0101 mathematics22f3014m17MathematicsPrimer (paint)QA299.6-433homogeneous groupshomogeneous spacesApplied Mathematics010102 general mathematics05 social sciencesryhmäteorianilpotent groupsCarnot groups; homogeneous groups; homogeneous spaces; metric groups; nilpotent groups; sub-Finsler geometry; sub-Riemannian geometry; Analysis; Geometry and Topology; Applied Mathematicssub-riemannian geometrysub-Riemannian geometry43a8053c17Carnot groupscarnot groupsengineeringsymbols22e25Geometry and Topology0509 other social sciences050904 information & library sciencesCarnot cycleAnalysisAnalysis and Geometry in Metric Spaces
researchProduct